
NPS-EC-97-0/J 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

Performance Analysis of the Wiener Filter 
with Applications to Underwater Acoustic Signals 

by 

N. Ruiz Fontes 
C. W. Therrien 

August 1997 

19971010 068 
Approved for public release; distribution is unlimited. 

Prepared for: Office of Naval Research 
800 North Quincy Street 
Arlington, VA 22217-5000 

[xjnc QUALITY moPEUTEB a 



NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

Rear Admiral M.J. Evans 
Superintendent 

R. Elster 
Provost 

This report was sponsored by the Office of Naval Research. 

Approved for public release; distribution is unlimited. 

The report was prepared by: 

(_' Cd TTUJUUCJZ^ 
C. W. THERRIEN 
Professor 
Department of Electrical and 
Computer Engineering 

Reviewed by 

HERSCHEL H. LOOM15, JR. 
Chairman 
Department of Electrical and 
Computer Engineering 

Released by: 

DAVID W.NETZJ 
Associate Provost and 
Dean of Research 

DTIC QUALITY DJSPEUTEB 8 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204. Arlington VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

August 1997 
3. REPORT TYPE AND DATES COVERED 

Final Report   FY97 
4. TITLE AND SUBTITLE 

Performance Analysis of the Wiener Filter with Applications to 
Underwater Acoustic Signals 

6. AUTHOR(S) 

N. Ruiz Fontes and C. W. Therrien 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, CA 93943-5000 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Office of Naval Research 
800 North Quincy Street 
Arlington, VA 22217-5000 

5. FUNDING NUMBERS 

N6660497WR70391 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

NPS-EC-97-011 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

The views expressed in this report are those of the author and do not reflect the official policy or 
position of the Department of Defense or the United States Government. 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 
12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

This report provides a detailed analysis of the performance of the Wiener optimal filter for 
estimating a signal in additive noise. Both IIR and FTR forms of the filter are considered using a 
first order AR model for both the signal and noise. Expressions are derived for the processing gain, 
mean-square error and signal distortion, and plotted as a function of the model parameters. A more 
general form of the filter is also presented where one measure of performance, e.g., signal 
distortion, can be optimized with constraints on the others. Performance on this more general filter 
is presented and compared to that of the Wiener filter. 

14. SUBJECT TERMS 

noise filtering, Wiener filter, optimal filter, underwater acoustic signals, 
passive sonar signal processing 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 
NSN 7540-01-280-5500 

15. NUMBER OF PAGES 

92  
16. PRICE CODE 

20. LIMITATION OF 
ABSTRACT 

SAR 
STANDARD FORM 298 (Rev. 2-89) 
Dmpflrihft»! K»  AMCI  Ctrl    tin.-iO 000.101 



TABLE OF CONTENTS 

I. INTRODUCTION  1 

A. MOTIVATION FOR THE STUDY  1 

B. PROBLEM DESCRIPTION  2 

1. Problem Statement  2 

2. Solution of The Wiener-Hopf Equations: 

The IIR filter  4 

3. Solution of The Wiener-Hopf Equations: 

The FIR filter  5 

C. ANALYSIS MODELS  7 

D. FILTERING AND MEASURES OF PERFORMANCE  9 

E. OUTLINE OF REPORT  11 

II. ANALYSIS OF THE IIR WIENER FILTER  13 

A. THE IIR WIENER FILTER  13 

B. PROCESSING GAIN FOR THE IIR FILTER  20 

C. MEAN SQUARE ERROR FOR THE IIR FILTER  24 

D. SIGNAL DISTORTION FOR THE IIR FILTER  27 

E. SUMMARY  31 

III. ANALYSIS OF THE FIR WIENER FILTER.  35 

A. THE FIRST ORDER FIR WIENER FILTER  35 

1. Processing Gain for First Order Filter.  38 

2. Mean Square Error for First Order Filter  41 

3. Signal Distortion for First Order Filter  43 

B. PERFORMANCE MEASURES FOR HIGHER ORDER FIR WIENER 

FILTERS  45 

1.         Processing Gain for Higher Order FIR Filter  46 



2. Mean Square Error for Higher Order FIR Filter  49 

3. Signal Distortion for Higher Order FIR Filter  51 

C.       SUMMARY  52 

IV. EXTENDED OPTIMAL FILTERING  57 

A. THE EXTENDED OPTIMAL FILTER PROBLEM  57 

1. Minimizing mean-square error  57 

2. Minimizing distortion with constrained residual noise   .... 58 

3. Minimizing distortion for fixed processing gain  60 

4. Maximizing processing gain with fixed distortion  61 

B. PERFORMANCE OF THE GENERALIZED FILTER  63 

V. APPLYING EXTENDED OPTIMAL FILTERING TO UNDER- 

WATER SIGNALS     67 

A. INTRODUCTION     67 

B. RESULTS  69 

VI. CONCLUSIONS  77 

A. SUMMARY  77 

B. FOR FUTHER STUDY  78 

LIST OF REFERENCES     79 

INITIAL DISTRIBUTION LIST      81 

11 



LIST OF FIGURES 

1. General linear signal estimation problem        3 

2. Power spectral density function for real exponential correlation function 

(a > 0 and a < 0)        8 

3. General linear signal estimation problem        9 

4. Location of pole of the IIR filter as a function of signal and noise correlation 

coefficients (a and 7) for input signal-to-noise ratio of 0 dB      17 

5. Location of pole of the IIR filter as a function of a for 7 = 0 and different 

values of the input signal-to-noise ratio      18 

6. Location of the pole of the IIR filter as a function of a for 7 = —0.5 and 

different values of the input signal-to-noise ratio      19 

7. Comparison between theoretical and experimental values of processing gain 

for the IIR Wiener filter as a function of a, for 7 = 0 (white noise) and 

input signal-to-noise ratio 0 dB      22 

8. Comparison between theoretical and experimental values of processing gain 

for the IIR Wiener filter as a function of a, for 7 = -0.5 and input signal- 

to-noise ratio —10 dB      23 

9. Processing gain for the IIR Wiener filter as a function of a for 7 = 0 and 

different values of input signal-to-noise ratio      24 

10. Processing gain for the IIR Wiener filter as a function of a for 7 = -0.5 

and different values of input signal-to-noise ratio      25 

11. Processing gain for the IIR Wiener filter as a function of a for 7 = -.999 

and different values of input signal-to-noise ratio      26 

12. Comparison between theoretical and experimental values of mean square 

error for the IIR Wiener filter as a function of a for 7 = 0 (white noise) 

and input signal-to-noise ratio of 0 dB       27 

111 



13. Mean square error for the IIR Wiener filter as a function of a for 7 = 0 

(white noise) and different values of input signal-to-noise ratio      28 

14. Mean square error for the IIR Wiener filter as a function of a for 7 = -0.5 

(colored noise) and different values of input signal-to-noise ratio      29 

15. Comparison between theoretical and experimental values of signal distor- 

tion for the IIR Wiener filter as a function of a for 7 = 0 and input 

signal-to-noise ratio 0 dB      30 

16. Signal distortion for the IIR Wiener filter as a function of a for 7 = 0 

(white noise) and different values of input signal-to-noise ratio      31 

17. Signal distortion for the IIR Wiener filter as a function of a for 7 = -0.5 

(colored noise) and different values of input signal-to-noise ratio      32 

18. Location of the zero of the first order FIR as a function of the signal and 

noise correlation coefficients (a and 7) for input signal-to-noise ratio of 0 dB. 37 

19. Location of the zero of the first order FIR as a function of the signal and 

noise correlation coefficients (a and 7) for input signal-to-noise ratio of 

-10 dB      38 

20. Location of the zero of the first order FIR filter as a function of a for 

7 = -0.5, and for different values of the input signal-to-noise ratio      39 

21. Comparison between the theoretical and experimental values of the pro- 

cessing gain for the first order FIR filter for 7 = 0 (white noise) and input 

signal-to-noise ratio (pin) of 0 dB      40 

22. Comparison between the theoretical and experimental values of the pro- 

cessing gain for the first order FIR filter for 7 = 0.5 (colored noise) and 

input signal-to-noise ratio (pin) of -10 dB      41 

23. Processing gain for the first order FIR filter as a function of a, for 7 = 0 

(white noise), and different input signal-to-noise ratio      42 

IV 



24. Comparison between the theoretical and experimental values of the mean- 

square error for the first order FIR filter for 7 = 0 (white noise) and input 

signal-to-noise ratio of 0 dB      43 

25. Comparison between the theoretical and experimental values of mean- 

square error for the first order FIR filter as function of a for 7 = 0.5 

(colored noise) and input signal-to-noise ratio of —10 dB      44 

26. Mean square error for the first order FIR filter as a function of a for 7 = 0.5 

(colored noise) for different values of input signal-to-noise ratio      45 

27. Comparison between the theoretical and experimental values of signal dis- 

tortion for different values of a and for 7 = 0 (white noise) at a input 

signal-to-noise ratio of 0 dB      46 

28. Signal distortion for the first order FIR filter as a function of a for 7 = 0 

and different values of the input signal-to-noise ratio      47 

29. Signal distortion for the first order FIR filter as function of a for 7 = 0.5 

and different values of the input signal-to-noise ratio      48 

30. Processing gain for the FIR filter of length P for 7 = 0 (white noise) and 

input signal-to-noise ratio of 0 dB      50 

31. Mean Square Error for the FIR filter of length P for 7 = 0 (white noise) 

and input signal-to-noise ratio of 0 dB         51 

32. Signal Distortion for the FIR filter of length P for 7 = 0 (white noise) and 

input signal-to-noise ratio of 0 dB      53 

33. Processing gain for the IIR filter for 7 = 0 (white noise) and input signal- 

to-noise ratio of 0 dB      54 

34. Normalized mean-square error for the IIR filter for 7 = 0 (white noise) and 

input signal-to-noise ratio of 0 dB      55 

35. Signal distortion for the IIR filter for 7 = 0 (white noise) and input signal- 

to-noise ratio of 0 dB      56 



36. Processing gain for the generalized Wiener filter as function of a and A for 

7 = 0 (white noise) and input signal-to-noise ratio of 0 dB      64 

37. Mean square error for the generalized Wiener filter as function of a and A 

for 7 = 0 (white noise) and input signal-to-noise ratio of 0 dB      65 

38. Signal distortion for the generalized Wiener filter as function of a and A 

for 7 = 0 (white noise) and input signal-to-noise ratio of 0 dB      66 

39. Prewhitening in Short-Time Extended Filtering Algorithm      68 

40. Overlap Averaging Technique Used in Noise Removal      69 

41. Results of the Application of the Extended Optimal Filtering Technique 

to a Synthetically Generated Short Pulse Signal with Added Low Power 

White Noise, for Minimum Residual Noise (A = 1). (a) Original Clean 

Data, (b) Original Data plus White Noise, (c) Processed Data      72 

42. Results of the Application of the Extended Optimal Filtering Technique 

to a Synthetically Generated Short Pulse Signal with Added Low Power 

White Noise, for Residual Noise Power Equivalent to 30% of the Input 

Noise Power, (a) Original Clean Data, (b) Original Data plus White 

Noise, (c) Processed Data (d) Values of A for Each Segment      73 

43. Results of the Application of the Extended Optimal Filtering Technique 

to a Synthetically Generated Short Pulse Signal with Added Low Power 

White Noise, for Residual Noise Power Equivalent to 70% of the Input 

Noise Power, (a) Original Clean Data, (b) Original Data plus White 

Noise, (c) Processed Data (d) Values of A for Each Segment      74 

44. Results of the Application of the Extended Optimal Filtering Technique 

to a Killer Whale Song for Minimum Residual Noise (A = 1). (a) Original 

Noisy Data, (b) Processed Data         75 

45. Results of the Application of the Extended Optimal Filtering Technique 

to a Killer Whale Song for Residual Noise Power Equivalent to 20% of the 

Input Noise Power, (a) Original Noisy Data, (b) Processed Data      76 

VI 



PREFACE 

The work in this report represents the Masters thesis of LCDR Natanael Ruiz Fontes 
carried out under the guidance of Professor Charles Therrien of the Naval Postgraduate 
School. 

This work was motivated when Steve Greineder and others of NUWC Code 2121 noticed a 
significant signal distortion occuring in some cases when a noise cleaning algorithm based 
on the Wiener filter was applied to some data sets. In addition, certain other questions 
about performance of the filter, such as the typical processing gain, had been raised and 
needed some further attention. 

Rather than carry out experiments on further empirical data, we decided to take a primarily 
analytical approach to the problem. In particular, since the answers to these questions 
concerning the filter is not available in any of the standard literature, we attempted to 
conduct an investigation of the behavior of the basic Wiener filter and develop formulas by 
which we could compute the theoretical limits of performance. This was backed up by 
results on experimental data and would have direct implications for the performance of the 
noise cleaning algorithm cited above. 

The investigation of Wiener filter performance ultimately led to a simple generalization of 
the filter where various measures of performance could be traded off against each other; so 
for example, signal distortion could be reduced with some slight overall increase in residual 
noise and mean-square error. 

The formulas in the analysis of the ER Wiener filter especially, are difficult to derive and 
some use was made of a symbolic mathematics program to help in the algebraic 
simplification. Therefore the detailed steps in the derivation are not always presented, but 
the main formulas and steps are given. The formulas have been checked carefully and 
verified with experimental results. Several curves and graphs illustrate the results. 

VII 



I.        INTRODUCTION 

A.     MOTIVATION FOR THE STUDY 

Data from passive sonar is generally accompanied by ambient noise arising from 

shipping traffic, marine life, wave motion, moving or cracking ice (in the Arctic), and nu- 

merous other sources. The statistical properties of the noise are variable, even direction- 

dependent, and have been the source of many studies and analyses [Ref. 1, 2, 3]. Noise 

degrades sonar data collection and related processing of the data to extract information. 

Since ambient noise cannot be completely avoided when collecting real underwa- 

ter acoustic data, it is desired, in many situations, to remove the noise before further 

processing. In general, the signals of interest and the ambient noise are non-stationary 

and their statistics are not known a priori. Here we approach the problem of removing 

additive noise from a given signal by using a short-time optimal filtering technique. In 

this approach we assume that the noise is stationary for the duration of the signal, and 

that the signal can be assumed stationary over very short time intervals. We exploit this 

feature and develop improved algorithms for removing the noise. 

The work in this report basically consists of two parts. In the first part (Chapters 

II and III), we perform a detailed analysis of the Wiener filter and evaluate its perfor- 

mance using three different criteria. For this work we use a simple signal model which 

nevertheless provides insight into results for more general types of signals. Both the IIR 

and FIR forms of the filter are considered. In the second part (Chapters IV and V), we 

propose a new algorithm based on a generalization of the Wiener filter and motivated by 

our analysis, that can be applied to real data. The implementation of the algorithm on a 

short-time basis is similar to that developed by Frack [Ref. 4] and we use the same basic 

structure of the programs. Results of the application of this algorithm to underwater 

acoustic data (biologic data) are presented. 



B.     PROBLEM DESCRIPTION. 

In this section we describe the problem of noise removal to be addressed and 

introduce the Infinite Impulse Response (IIR) and the Finite Impulse Response (FIR) 

forms of the Wiener filter used to estimate the signal in noise. 

1.      Problem Statement. 

We consider here the problem of estimating a signal in additive noise. The ob- 

served discrete observation sequence is given by 

x(n) = s{n)+r)(n) (1.1) 

where s(n) is the signal and 77(71) is the noise. The signal duration may be anywhere 

from a few miliseconds to a few seconds and is generally a nonstationary random process. 

The noise is assumed to be stationary over the entire observation interval and may be 

observed without the signal during the early part of the observation interval. That is, 

the signal becomes non-zero some time after the beginning of the observation interval, 

and the precise time at which it becomes non-zero is not known. Statistics for the signal 

and noise, such as mean or correlation function, are not known a priori and must be 

estimated from the data. 

Let us assume that the signal is to be estimated by applying the observation 

sequence to a linear filter as shown in Figure 1, and the filter is designed to minimize the 

mean-square error 

a* = E {(s(n) - s(n))*} 

where s(n) = y(n) is the filter output. Then the solution for this problem is obtained by 

solving the Wiener-Hopf equation [Ref. 5], which for the case of a stationary signal has 

the form 
oo 

J2 Rx(l - i)h[l] = Rsx(i);     0 < i < oo (1.2) 
1=0 

Here Rx(l) is the correlation function of the observations, h(l) is the impulse response 

of the filter, and Rsx(l) is the cross-correlation function between the signal and the 



x(n) = s(n) + 77(71) 

H(z) 

y[n] = s(n) 

Figure 1. General linear signal estimation problem. 

observation sequence. Since the noise is assumed independent of the signal, it is easy to 

show that 

Rx(l) = Rs(l) + Rr,(l) (1.3) 

and 

Rsx(l) = R,(l) (1.4) 

where Rs(l) and R^tf) are the signal and noise correlation functions, respectively.   The 

estimate for the signal is then given by 

n 

s(n) = y(n) =   Y,  Hn ~ k)x(k) (1.5) 
k=—oo 

and the mean-square error can be shown to be 

oo 

<7? = ä,(O)-5>(Oä**(0 (1.6) 
1=0 

where again Rsx(l) = Rs(l) for this problem. 

When the signal s(n) is nonstationary, as is generally the case in our application, 

the optimal filter is time-varying and equations (1.2) through (1.6) take on a slightly 

different form [Ref. 5] involving the time varying correlation functions Rs{nun2) and 

Rx{n\,n2). Although these correlation functions could be estimated from the data and 

the corresponding time-varying filter could be computed, it is generally more efficient to 

take a block-oriented approach where the data is assumed stationary over short segments 

and the equations for a time-invariant filter are used to find a filter that applies only to 

the data segment. Although we do not do so in this work, the data segments could be 

overlapped by some amount, and indeed when the overlap consists of all but the a single 



point, the result is equivalent to using the time-varying filter. Thus for purposes of our 

work and analysis here, (1.2) through (1.6) are the relevant equations. 

The Wiener-Hopf equation (1.5) can be solved for two types of filters, the Infinite 

Impulse Response (IIR) filter, which is applied recursively to the data, and the Finite 

Impulse Response (FIR) filter, where the filtering process involves a simple convolution. 

Both of these filters are known as Wiener optimal filters and are described in following 

sections. Later, we investigate the performance of these two filters in the case when both 

signal and noise are represented by a first order autoregressive (AR) model. This inves- 

tigation using a simple model provides insight into the general behavior of the Wiener 

Filter, and so, helps to. predict its behavior for more involved cases. 

2.      Solution of The Wiener-Hopf Equations: 
The IIR filter. 

The IIR Wiener filter is recursive in form and can have the advantage of requiring 

fewer parameters than a comparable FIR form of the filter. In many cases the IIR filter 

is the only true optimal solution to the problem and FIR filters are in fact suboptimal 

since they do not achieve the absolutely lowest mean-square error. Since the filter is 

required to be causal, the problem is not straightforward; it was solved (originally in the 

continuous case) by Wiener using spectral factorization methods [Ref. 6]. Because the 

solution procedure will be referred to later in this work, we summarize it in this section. 

The solution for the IIR filter derives from observing that if the observation se- 

quence is a white noise process Rx(l) = o$S(l) then (1.2) becomes 
CO 

^2 <%&{l - i)h(l) = Rsx(i);     0<i<oo (1.7) 

leading to the simple solution 

urn      I ^R°*W   l > ° M0 = <    ° (1.8) 
[ 0 Z<0 

The procedure then is to first whiten the observed random process x and then apply the 

solution above. Thus we conceptually represent the optimal filter A as a cascade of two 



filters, the whitening filter g, and the optimal filter ti for the whitened process. Both g 

and ti are required to be causal. 

To find the whitening process we observe [Ref. 5] that the complex spectral density 

function of the input process x can be factored as 

Sx(z) = K,,Hca{z)Hca{z-1) (1.9) 

Therefore, if we choose G(z) = 1/Hca(z), we see that the filter g will have the necessary 

whitening properties and the whitened input process will have variance JC0. 

The cross-correlation between the whitened input process and the signal has a 

complex cross-spectral density function given by Ss^/H^z-1); therefore, the filter 

corresponding to (1.8) for the whitened process is written as 

&sx\z) 

Hca{z-i)\ 
(1.10) 

where the notation [ ]+ means that the resulting function corresponds only to the causal 

part of the quantity within brackets. Finally, by cascading G(z) and H' (Z) we obtain the 

expression for the optimal IIR filter 

H(z) = 
1 

fcoHca(z) 
Ssx(z) 

Hca(z-i)\ + 
(1.11) 

where Hca(z) and KQ are derived from the spectral factorization (1.9), and Ssx(z) is the 

cross spectral density function for s(n) and x(n). 

3.      Solution of The Wiener-Hopf Equations: 
The FIR filter. 

The FIR filter is simpler to derive. Since the filter has finite length P, the filtering 

equation (1.5) can be written as 

p-i 

Vip) = IT h(l)x(n - I) 
1=0 

(1.12) 

We can also directly apply (1.2) noting that the upper and lower limits need to reflect 

the causality and finite length of the filter. The Wiener-Hopf equation for real process 



then becomes 
p-i 

Y, Rx(l - i)h(l) = RsM     i = 0,1, ■ - -, P - 1 
1-0 

(1.13) 

and the mean-square error (1.6) is given by 

p-i 

&t = Rs(0) - £ h(l)Rsx(l) 
1=0 

(1.14) 

For the FIR filter it is most convenient to write the equations using vector nota- 

tion. The filter output is written as 

y[n] = hrx 

where h and x are the vectors of filter coefficients and observations respectively 

(1.15) 

MO) x{n) 

A(l) 
x = 

x(n — 1) 

. HP -1). x(n-P + l) 

Equations (1.13) and (1.14) can then be written as 

RTh = f ■x" — '■sx 

and 

a2
£=Rs(0)-hTrs 

where Rx = EJx(n)xT(n)} and rsx = E{s(n)St(n)}. It follows from (1.3) that 

ttx = R.s + R,j 

(1.16) 

(1.17) 

(1.18) 

where Rs and R, are the signal and noise correlation matrices, and f sx is the first column 

of Rs. This form of the equations is used in the analysis that is presented later in this 

report. 



C.     ANALYSIS MODELS. 

The detailed analyses presented in this report are based on a first order autore- 

gressive (AR) model for the signal and the noise. The signal s(n) is assumed to be 

generated according to the difference equation 

s(n) = as(n - 1) + ws(n) (1.19) 

where ws(n) is a (zero mean) white noise process with variance a2
Us and a is a real valued 

parameter with |a| < 1. The correlation function for the signal is then found to be 

Rs(l) = a2
saM (1.20) 

where the signal power a2
s is given by 

"l = Ä (1.21) 

Thus a is seen to represent the correlation coefficient for the process (a = R(1)/R(0)) 

with higher values of a representing increased correlation. The complex spectral density 

function for the signal is the z-transform of the correlation function Rs(l) and has the 

form 

Ss(z) =        al{\~a2)   n (1.22) (1 — az){± — az 1) v      ' 

If this is evaluated on the unit circle (z = ejw) we have the power spectral density function 

b^e   ) ~ i + a2 _ 2acos{u) (1-23) 

For a > 0 this spectrum has a lowpass character while for a < 0 the spectrum has a 

highpass character (see Figure 2). For a = 0 the signal is a white noise sequence and the 

spectrum is flat. 

The noise 77(72), when it is not white, is represented by a similar model. The noise 

satisfies the difference equation 

rj(n) =yq(n - 1) + wv(n) (1.24) 
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Figure 2. Power spectral density function for real exponential correlation function (a > 0 
and a < 0). 

where wv(n) is a white noise process independent of ws(n), and 7 is real with magnitude 

less than 1. The process has a correlation function of the form 

Ml) = <%1 = ^^\i\ (1.25) 

where the noise power a% is given by 

cr„ = *      !_72 

and a complex spectral density function 

Sv(z) °l (1 - 72) 
(I-72XI-72-1) 

The power spectral density function is therefore given by 

°i (1 - 72) Si(e>u) = \^ '-L  
1 + 72 — 2jcos(cu) 

(1.26) 

(1.27) 

(1.28) 



B(z) 
y(n) = ys{n) + yn(n) x(n) — s(n) + rj{n) 

Figure 3. General linear signal estimation problem. 

and has a lowpass or highpass character according to the sign of 7. As described earlier, 

the noise is assumed to be added to the signal, and the main problem addressed in this 

report is the removal of the noise or estimation of the signal. 

D.     FILTERING AND MEASURES OF PERFORMANCE. 

We have considered the problem where we observe the sequence x(n) given in (1.1) 

where s(n) is the desired signal and r](n) is additive noise uncorrelated with the signal. It 

is desired to remove as much of the noise as possible by linear filtering. Although we have 

already discussed the optimal solution in terms of mean-square error, let us temporarily 

put that solution aside and formulate the problem more generally. We assume that the 

observed sequence x(n) is applied to a filter and the output of the filter y(n) is an estimate 

of the signal s(n). Since the filter is linear, we can define components of the output as 

shown in Figure 3. In particular ys(n) is the response of the filter to the signal alone and 

yn{n) is the response to the noise alone. These components permit defining the following 

measures of performance: 

Processing Gain: The processing gain (PG) for the filter is defined as 

PG=^ (1.29) 
Pin 

where pin and pout are the input and output signal-to-noise ratios defined as 

£{.»(„)}      RM 
Pm     EMn)}"8,(0) (1-30) 

*- " Ifew} " KM (L31) 



The processing gain is usually measured in dB, i.e., 

PG(dB) = 101og10^i (1.32) 
Pin 

Processing gain relates to the relative power in the signal and the noise but does not 

address accuracy of the signal estimate. 

Mean Square Error: The mean-square error is the expected value of the squared 

difference between the signal and the filtered output. Here we use a normalized measure 

of the mean-square error defined by 

E{s*(n)} Rs(0) ^ 

where R€(l) is the correlation function for the "error" defined as e(n) = s(n) - s(n) = 

s{n) - y(n). 

When the output of the filter is equal to the signal itself (except possibly at a 

countable set of points) then the mean-square error is equal to zero. The maximum 

occurs when y(n) is zero, where this normalized mean-square error has a value of 1. 

Mean-square error is the quantity that is optimized in the traditional Wiener optimal 

filtering problem discussed above. 

Signal Distortion: Signal distortion (SD) addresses what the filter does to the 

signal itself irrespective of the noise, and is defined as 

E{s*(n)}E{y*(n)} Rs(0) Rys(0) {IM) 

where Rsys(l) is the cross-correlation function between s(n) and ys(n). This quantity 

takes on values in the interval [0,1] and is minimized when the signal is unchanged by 

the filter (ys(n) = s(n)), i.e., there is no distortion introduced. 

An ideal filter would form a perfect estimate for the signal and completely elimi- 

nate the noise. Such a filter would have infinite processing gain, zero mean-square error, 

and zero signal distortion. Since no linear filter can achieve such ideal performance, 

we can balance these measures, depending on the application, emphasizing one measure 
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compared to the others.   Thus all of the measures defined above will have use in the 

sequel. 

E.     OUTLINE OF REPORT 

The remainder of this report is organized as follows. Chapter II introduces, anal- 

yses and discusses the performance of the IIR Wiener filter described above. Chapter 

III provides a similar analysis and discussion of the performance for the FIR form of 

the Wiener filter. Chapter IV presents a filter based on a new criterion that serves as a 

generalization of the FIR Wiener filter. This filter, which we call the extended optimal 

filter, provides a way to improve the signal distortion with only slight degradation in the 

other performance measures. Chapter V incorporates this technique in a noise removal 

algorithm based on short term filtering of the observation sequence and demonstrates 

its performance on sonar data. Chapter VI concludes the report with a summary and 

suggestions for further investigation. 
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II.        ANALYSIS OF THE IIR WIENER FILTER 

In this chapter we derive analytical expressions for the Wiener IIR optimal filter 

for a signal in colored noise. The signal and the noise are each represented by a first 

order AR model (equations (1.19) and (1.24)). The expressions for the filter generalize 

the results obtained in [Ref. 5] which treats the white noise case only. 

After deriving an expression for the optimal filter we derive the corresponding 

expressions for the measures of performance outlined in Chapter I and examine these 

expressions as a function of some of the parameters describing the model. While the 

model expressed by (1.19) and (1-24) is only of first order, it exhibits many of the gen- 

eral characteristics of a more complicated model and allows us to draw several general 

conclusions. 

A.     THE IIR WIENER FILTER 

The general expression for the optimal IIR (Wiener) filter for estimating a real- 

valued signal s(n) in additive noise r)[n] (see (1.1)) is given by equation (1.11). For the 

case of a first order AR model, the signal and noise complex spectral density functions 

are given by (1.22) and (1.27) respectively. Since the signal and noise are independent 

with zero mean, it follows from (1.4) that the complex spectral density function between 

the signal s(n) and the observation x{n) is given by 

S„(z) = Ss(z) =        °?(1 "a2) (III) 
(1 — az)(l — az l) 

Similarly, it follows from (1.3) that the complex spectral density function for the obser- 

vations is 

Sx{z)   =   Ss(z) + Sv(z) 

= ^2(l-<*2) ^(l-72) 
(1 - az){\ - az~l)      (1 - 72)(1 - 7z-i) 
<r2(l - [a|2)(l + 7

2 - 72 - 7z-1) + crg(l - 1712)(1 + q2 - az - az'1) 

(1 - az-i)(l - az)(l - 7z-1)(1 - iz) 

13 



By collecting terms, this last equation can be written as 

-Az + B - Az~l 

where 

Sx(z) = 
D(z) 

A   =   ^a2(l-a2) + aa2(l-j2) 

(II.2) 

(II.3) 

B   =   a2(l-a2)(l + 1
2) + a2(l-7

2)(l + a2) (II.4) 

and 

D(z) = (1 - az'1)^ - az)(l - jz-l)(l - 1Z) 

After factoring the numerator, we can write (II.2) as 

—Az~l 
S*(Z) =     Drzs     0 ~ Zla)(z ~ Zlb) 

where 

and 

n - B - ^ ~ Q2
)(

1
 + 72) + tfi1 ~ 72)(1 + a2) 

A a2
s(l-a2)j + a2(l-^)a 

This last constant can be expressed as a function of a, 7, and pin, as 

r _ [Pinjl - a2)(l + 72)/(l - 72)1 + (1 + a2) 
[pi„7(l-a2)/(l-7

2)] + o; 

where pin is the input signal-to-noise ratio 

(II.5) 

(II.6) 

(II.7) 

(II.8) 

(II.9) 

(11.10) 

Pin — 
Ot 

(11.11) 
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Z\ (11.12) 

From the form of the polynomial in (II.2) and (II.6), it can be seen that zXazlh = 1, or 

that zu = l/zia. Let us denote the root that is inside the unit circle in the complex 

plane as z\, i.e., 

Z\a if l-Zlal < 1 

zu, = 1/zia   otherwise 

Then from (11.10), we see that zx depends only on a, 7, and pin. 

We can now factor the complex spectral density function Sx(z) by writing it in 

the form 
(1 - zlZ~l) (1 - Zlz) 

S (z) = —■ • - xK J     zx    (1 - az-1)^ - jz-1)    (I - az)(l --yz) 

In comparing this with (1.9) we can identify 

/C0 = A/zi 

(11.13) 

(11.14) 

and 

Hca(z) (I-*!*"1) 
(l-a^-1)(l-7^-1) 

[Hca(z-i) 
equation for the optimal filter. From (II. 1) and (11.15), we 

Let us now proceed to compute the term 

m (II.l) a 

Ssx(z)      _ <7S
2(1-H2)       (l-az)(l-1Z) 

(11.15) 

that appears in (1.11), the 
+ 

have 

Hca{z-X) (1 - az)(l - az'1)       (1 - zxz) 

=   °?(1 " kl2) 1Z (1 - (I/7)*-1) 
zxz {I - <xz-l)(l - (1/zx)z-

1) 

This can be written in a partial fraction expansion as 

osx\z) C\ Ci + 

where 

and 

Hcaiz-i)      (1 - az-i) " (1 - (lM)z-1) 

Z\ (1 — 1/zia) 

C2 = a2(l - N2) 2-   7 1 - (Zi/j) 
ZX  (1 - ZXOL) 

(11.16) 

(11.17) 

(11.18) 
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The causal part of the expression (11.16) can now be written as 

H\z)   = 
£o  [Hca{z-1) 

Ci 

+ 

1 — az~x 

Al- l/ziot        1 - az~l 

A a- 1/zi        1 - az~l 

Finally, combining (11.15) and (11.20) we obtain 

H(z) 
1 

Hca(z) JC0 

&sx\z) 

Hca{z-i) + 

(l-az-^jl-yz-1) zx   a-l/7<yf(l-la|2)7M 
(1-ZiZ-1) A a-l/z!      (1-az-1) 

' zx azi - z1/j -i^af(l-H2)7Mj If- 72; -1 

y-l \A   azi - x j yi - ZlZ- 

The final expression for the Wiener optimal IIR filter can thus be written as 

where the gain G is given by 

™-°{££) 

(11.19) 

(11.20) 

(11.21) 

(11.22) 

(11.23) 

It is interesting to note that the filter places a zero at z = 7 in an attempt to cancel the 

additive noise. Also, it is important to note that zx is just a function of the constant C, 

and, therefore, through (11.10), it is just a function of the input signal-to-noise ratio pin, 

the signal parameter a, and the noise parameter 7. 
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The following figures show the behavior of the pole zx for different situations. In 

Figure 4, the input signal-to-noise ratio (pin) is fixed, but the signal parameter a varies 

from -1 to +1. We have plotted the location of the pole z1 of the optimal filter for 

different values of 7 (7 = 0 represents the white noise case). Notice that when a = 7, the 

filter places the pole at the same location (zl = 7), since it cannot distinguish the signal 

form the noise. Also observe that when a = ±1, the pole is placed at z = ±1, regardless 

of the value of 7. In Figure 5, the noise parameter 7 has a fixed value of 0 corresponding 

gamma 

     0.8 

- -     0.5 

0 

+     -0.5 

 -0.8 

-1 
-1 -0.8      -0.6      -0.4      -0.2 0 0.2 0.4 0.6 0.8 

signal correlation coefficient (alpha) 

Figure 4. Location of pole of the IIR filter as a function of signal and noise correlation 
coefficients {a and 7) for input signal-to-noise ratio of 0 dB. 

to white noise, and the pole zx is plotted for different values of the input signal-to-noise 

ratio. Notice in Figure 5 that when the input SNR is small, the pole of the IIR filter 

approaches the signal parameter a. This can be shown analytically as follows. 
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-1 -0.8       -0.6       -0.4       -0.2 0 0.2 0.4 0.6 0.8 
Signal correlation coefficient (alpha) 

Figure 5.   Location of pole of the IIR filter as a function of a for 7 = 0 and different 
values of the input signal-to-noise ratio. 

First, from (11.10) we see that 

lim (C) = i±^ 

Thus, 

tow = i(a±£3±./o+*)'-** 
Pin->-0 a az 

2o; 
(2a2)  = a (11.24) 

In a similar manner, we can show that for a large input SNR, the pole approaches the 

noise parameter 7. We have 
I + 72 

lim (C) 
7 
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-1        -0.8      -0.6      -0.4      -0.2 0 0.2        0.4       0.6        0.8 1 
signal correlation coefficient (alpha) 

Figure 6.   Location of the pole of the IIR filter as a function of a for j = -0.5 and 
different values of the input signal-to-noise ratio. 

Therefore 

Itarf   =   1/(1±7Ü±   /W±7!Ei/ 
Pin-tOO 7 fy£, 

27 
(27

2)   =  7 (11.25) 

This characteristic can alsoNbe observed in Figure 6, where we have plotted the location 

of the IIR filter pole as a function of a, for different values of the input signal-to-noise 

ratio, and for 7 = —0.5. As we will see in a later section, this behavior leads to a better 

performance, in terms of the processing gain, for smaller values of the input signal-to- 

noise ratio. 
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B.     PROCESSING GAIN FOR THE IIR FILTER. 

Using the first order signal and noise model, we can derive an analytical expression 

for the processing gain (1.29) for the IIR Wiener Filter. For this we first need the input 

and output signal-to-noise ratios. The input signal-to-noise ratio is given by (1.30) or 

(11.11), while the output signal-to-noise ratio is given by (1.31). Hence, the problem is 

to find expressions for Rys(0) and i^(0) in terms of a, 7, a2
s, and aj. To do this, first 

observe that the complex spectral density of the output of a linear system is given by 

[Ref. 5] 

Sy(z) = H(z)H(z-l)Sx(z) (11.26) 

where H(z) is the filter transfer function and Sx is the complex spectral density function 

of the input. Since the correlation function is related to the complex spectral density 

function by the inversion formula 

m =  ^Tjfs^z)zl'ldz 

=   J2 Residues^ {z)zl~1} 

where the residues correspond only to the poles within the unit circle, we have 

Ry(0)   =   ^Residues^)*"1] 

=   EResidues^)^-1)^)^] (iL27) 

To evaluate Rys (0) we use this formula assuming that the input complex spectral density 

function Sx(z) is that of the signal. Thus from (11.26), (1.22), and (11.22) we obtain 

V zl-zlZ-i l-zxz (l-az-i)(l-az) {iL28} 

and, according to (11.27) we have 

Rys (0) = RES*=Z1 + RES,=Q + RES^o (11.29) 

where the three residues are given by 

RES,-,,    =       Cd-70(1-7^(1-0»)    . 
(2-Zi)(l-z,z)(l-az)(l-CK-i)^    z" 

JZ=Z\ 

Z=Zi 
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RES^a     = 

GWs(l-o?){l-1/z1){l-1zl) 
{l-zl){l-a/zl){l-azl) 

G2(l-7^1)(l-7^(l-a2) 
(1 - zlZ-

l)(l - Zlz)(l - az){z - a) 

GWs(l-1/a){l-1a) 
{l-zl/a){l-zla) 

{z - a) 

RESz=o   = 

Thus combining these results, we have 

Rys(0) = *2
sG

2 

G2(l-7Q(l-7^(l-aa>      (   _    , 
z(l - zlZ-^)(l - Zlz)(l - az)(l - az~l)[Z    %l) = 0 

z-0 

(l-1/zl){l-1zl)(l-a2) +  (1 - 7/a)(l - 7a) 
(11.30) 

(1 - zf)(l - aM)(l - azx)     (1 - z!/a)(l - zxa)_ 

In a similar manner we see that the output complex spectral density due to the noise 

alone is 

1-72-1   1—7z <J^(1-7
2
) 

SyAz)     =    & 

=   Gza. 2 Jl 

1 - ZiZ'1  1 - Ziz' (1 — 72:-1)(l - jz) 

(1 - 72) 
(11.31) 

"(l-ZiZ-W-ZiZ) 

Applying (11.27) and evaluating the expression at the single pole z = zx then leads to 

^(0)=<G27f—^) (11.32) 

ratio 

By taking the ratio of (11.30) and (11.32) we compute the output signal-to-noise 

_ (1-7/^(1-^)       (l-7/a)(l-7a)(l-*?) 
Pout — — ;—— r + 

(l-aMXl-a*!)  '  (l-zl/a)(l-z1a)(l-tf) (IL33) 

Finally, by substituting (11.11) and (11.33) into the definition (1.29) we obtain the final 

expression for the processing gain as 

PG (l-7M)(l-7*i) + Jl - 7/a)(l - 7<*)(1 - 4) 
(1 - a/Zl)(l - aZl)      (1 -Va)(l - zi.a)(l - a2) 

I-a2 

1-72 (11.34) 

Figure 7 shows the theoretical and experimental values of the processing gain for 

different values of a, and for 7 = 0, representing additive white noise, at a signal-to-noise 
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ratio of 0 dB. Figure 8 shows the same curves, but for 7 = -0.5 (colored noise) at an 

input signal-to-noise ratio of -10 dB. The experimental curve was obtained by averaging 

measured results for 10 different trials for each value of a, in order to obtain a smaller 

curve variance. Notice that there is very good agreement between the theoretical and 

experimental values. 

15 

10 

m 
2- 
c 

en 

Is 

theoretical 
experimental 

-j i_ 

-1 -0.8       -0.6       -0.4       -0.2 0 0.2 0.4 0.6 0.8 1 
alpha 

Figure 7. Comparison between theoretical and experimental values of processing gain for 
the IIR Wiener filter as a function of a, for 7 = 0 (white noise) and input signal-to-noise 
ratio 0 dB. 

Observe from Figures 7 and 8 that the processing gain for the first order IIR filter 

has its maximum values at a = ±1. We can examine the behavior explicitly at these 

limits as follows. For a -*■ ±1 the constant C in (11.10) approaches ±2. It follows then 
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Figure 8. Comparison between theoretical and experimental values of processing gain for 
the IIR Wiener filter as a function of a, for 7 = -0.5 and input signal-to-noise ratio -10 
dB. 

from (II.7) and (II.8) that the root zx approaches ±1. Using this result in (11.34) we find 

(1-7)(1-T)(1-^)      1        _    (l-7)(l-7)(l-*i)(l + *i) 
(l-z0(l-Zl)(l-7)(l + 7) 

lim, ■a-»±l PG   = 
(1-Zl)(l-Zl)      1 V 

(l-7)(l + *i) 
(l-z1)(l + 7) 

00 

(11.35) 

Figures 9 through 11, show the behavior of the processing gain for different values 

of the input SNR (pin), and for 7 = 0, 7 = -.5, and 7 = -.999. Notice that in all 

of these cases the processing gain approaches infinity as a ->• ±1. Intuitively, we can 

see from (11.22) that, for a completely correlated signal (a = ±1), the optimal IIR filter 

attempts to null the noise (by placing a zero at 7) while completely let the signal pass 

(pole at zi = a = ±1). Thus, while the input signal-to-noise ratio remains finite, the 
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output signal-to-noise ratio and thus the processing gain becomes infinite. 

Figure 9.   Processing gain for the IIR Wiener filter as a function of a for 7 = 0 and 
different values of input signal-to-noise ratio. 

C.     MEAN SQUARE ERROR FOR THE IIR FILTER. 

An analytical expression for the mean-square error of the Wiener filter for a first 

order AR signal in white noise is given in [Ref. 5]. Here we extend that result to the 

general colored noise case and derive an analytical expression for the MSE given by 

equation (1.33). 

If the error is defined as e(n) = s{n) - s(n), then (1.33) can be written as 

,-2 

(11.36) MSE = ^- 
°2s 

where a\ is the unnormalized mean-square error or error variance. It is shown in [Ref. 

5] that the complex cross spectral density function between the signal and the error is 
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Figure 10. Processing gain for the IIR Wiener filter as a function of a for 7 = -0.5 and 
different values of input signal-to-noise ratio. 

given by 

Substituting (1.22) and (11.22) then yields 

(11.37) 

(1 - az)(l - az-i) ^     " 1 - zlZJ (IL38) 

By the orthogonality theorem of linear mean-square estimation, the error variance of is 

equal to the cross-correlation function RS€(l) evaluated at lag I = 0. Therefore from the 

inversion formula for the complex cross spectral density we have 

of = Rse(0) = ^~<f Sse{z)z-ldz (11.39) 

This integral, involving (11.38) can be evaluated by residues, giving 

of   =   ^Residues[,Sse(z)2:_1] 
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Figure 11. Processing gain for the IIR Wiener filter as a function of a for 7 = -.999 and 
different values of input signal-to-noise ratio. 

of(l - c*2) 
(1 - az)(l - az~l) 

1 — 7a\ 
1 — Z\a) 

l-G- 
■ jz 

1 — ZiZ 
~-l (z-a) 

=    atll-G 

Finally, using this result in (11.36) we obtain 

MSE = 1 -G (1 ~ 7«) 
(1 - zxa) (11.40) 

Figure 12 compares the theoretical mean-square error for 7 = 0 and pin = 0 dB 

with the averaged measured squared errors for the same case. Again, there is a good 

agreement between the theoretical and the experimental results. Figure 13 shows the 

behavior of the mean-square error for input signal-to-noise ratio of -10 dB, 0 dB, and 

10 dB. Notice that, when a = 7 = 0, MSE = a*/(a2
s + a2

v). For example, when pin = 0 
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Figure 12. Comparison between theoretical and experimental values of mean square 
error for the IIR Wiener filter as a function of a. for 7 = 0 (white noise) and input 
signal-to-noise ratio of 0 dB. 

dB, the power of the signal equals the power of the noise, and MSE = 0.5, as expected. 

The same analysis for pin = 10 dB results in MSE = 0.1/1.1 « 0.1. 

Figure 14 shows a case when the noise is not white (7 = -0.5). The results are 

qualitatively similar to those for the white noise case. However the curves are skewed, 

indicating that the worse performance in terms of mean-square error occurs when the 

signal has a correlation coefficient equal to that of the noise. 

D.     SIGNAL DISTORTION FOR THE IIR FILTER. 

In this section we derive an explicit expression for the signal distortion (1.34) 

produced by the Wiener filter for the problem of a signal in additive noise. As in the 

previous sections, the signal and the noise are each represented by a first order AR model. 
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Figure 13. Mean square error for the IIR Wiener filter as a function of a for 7 = 0 (white 
noise) and different values of input signal-to-noise ratio. 

To evaluate the term Rsys(0) in (1.34), we begin with the cross complex spectral 

density function between the input and output of the filter is given [Ref. 5] by 

Ssys(z) = H(z-1)Ss(z) 

Therefore, as before, we can evaluate Rsys (0) from 

RsVt(0)   =   £ Residues^ {z)z~1] 

=   £ Residues G(^^\  _£(! ~ "V1 

The only residue is given by 

(1 - a2) 

l-zizj   (1 -az)(l -az~l) 
(11.41) 

Residue G (1 - jz) ^2 ^^ 

(1 - zlZf
s (1 - az)(l - az-^)z-\z - a) 

jln (1 ~ 7») 
asLr— - 

(1 - 2aQj) (11.42) 
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Figure 14. Mean square error for the IIR Wiener filter as a function of a for 7 = 
(colored noise) and different values of input signal-to-noise ratio. 

-0.5 

resulting in 

{L — zia) 

Then, by substituting (11.43), (11.30), and Rs(0) = of into (1.34) we can obtain an 

expression for signal distortion, 

SD = l-% (11.44) 
r 

where 

E   = 

F   = 

T2 
(1 ~ 7oQ 

(1 -*!<*). 

(l-7Ai)(l-7^i)(l-Q2) +  (1 - 7/«)(l - loc) 

(11.45) 

(11.46) 
(1 - zj)(l - aZl)(l - a/Zl)     (1 - Zl/a){l - Zla)_ 

Figure 15 shows the theoretical expression (11.44) against the measured results as 

a function of the correlation factor a, for white noise, with an input signal-to-noise ratio 
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of 0 dB. Notice that for values of a close to ±1, i.e., for highly correlated signals, the 

distortion is very low. This is also apparent from Figure 16 when the signal distortion 

0.12 

Figure 15. Comparison between theoretical and experimental values of signal distortion 
for the IIR Wiener filter as a function of a for 7 = 0 and input signal-to-noise ratio 0 
dB. 

is plotted for several different values of the input signal-to-noise ratio. Figure 16 also 

shows that the signal distortion is lower for higher values of the input signal-to-noise 

ratio, because the filter is able to pass more of the signal. Since we already know that 

lima-n^x = 1, we can evaluate the lim^ for (11.46) and verify that lim^ SD = 0. 

Also, for a = 7 (which implies that H{z) is an all-pass filter) the distortion is zero, as 

expected. However, there is a value for a, which we shall call the critical value ac, where 

the distortion reaches its maximum value. This value depends on pin. 

Figure 17 shows the result for 7 = -0.5. Again the distortion peaks at specific 

critical values of the correlation coefficient ac. However, in this case the two values do 
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Figure 16. Signal distortion for the IIR Wiener filter as a function of a for 7 = 0 (white 
noise) and different values of input signal-to-noise ratio. 

not occur at locations symmetrically distributed about the origin. 

E.     SUMMARY 

The analysis of this chapter based on the first order AR signal and noise model 

shows that the optimal filter for estimating the signal is also of first order. The filter has 

a zero at the location 7 corresponding to the noise correlation coefficient, and a pole at 

location zx which moves from —1 to +1 as the signal correlation coefficient a moves from 

—1 to +1 (see Figure 5). For low values of the input signal-to-noise ratio the pole z\ 

becomes very nearly equal to a, while for high input signal-to-noise ratio z\ approaches 

7 and the filter becomes an all-pass filter. 

The processing gain (PG) for the optimal filter increases with increasing signal 

correlation and becomes infinity in the limit as a approaches ±1 (perfectly correlated 
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Figure 17.  Signal distortion for the IIR Wiener filter as a function of a for 7 
(colored noise) and different values of input signal-to-noise ratio. 

-0.5 

signal). The processing gain decreases as the input signal-to-noise ratio increases indi- 

cating that less improvement is possible when the input signal-to-noise ratio is already 

high. 

The normalized mean-square error (MSE) for the optimal filter decreases with 

increasing correlation and becomes zero in the limit as a approaches ±1. It is fairly flat 

for most values of a and decreases most rapidly as a approaches ±1. The normalized 

mean-square error (MSE) also increases when the input signal-to-noise ratio decreases. 

The signal distortion (SD) becomes zero when a = 7, where the filter becomes 

an all-pass filter, and when a approaches ±1, where the signal is completely correlated. 

It achieves its maximum values for moderately high values of correlation. In the case of 

white noise this occurs around 0.8 < \ac\ < 0.9. (see Figure 16). 

The performance of the filter for colored noise parallels that of the filter for white 
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noise. However, the symmetry with respect to a = 0 is lost. When a = 7, the processing 

gain goes to zero, the mean-square error achieves its maximum value, and the signal 

distortion goes to zero. Maximum values of the signal distortion occur at two distinct 

points above and bellow the value of the noise correlation parameter 7 (see Figure 17). 
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III.        ANALYSIS OF THE FIR WIENER FILTER. 

In this chapter we develop expressions for the FIR form of the Wiener filter for 

the case where the signal and the noise are, again, each represented by a first order AR 

model (equations (1.19) and (1.24)). The chapter is divided into two parts. In Part A, we 

derive analytical expressions for the first order FIR Wiener filter, i.e., a FIR filter with 

only two coefficients. In Part B, we use a more general approach to derive expressions 

for a filter of any order. Although Part A treats a restricted particular case, it allows us 

to obtain simple expressions for the measures of performance as functions of the model 

parameters. On the other hand, the results of Part B permit us to plot the measures of 

performance for more general cases, where the FIR filter can be of any order. 

A.     THE FIRST ORDER FIR WIENER FILTER. 

In Chapter I we introduced the matrix form of the Wiener-Hopf equation (1.16) 

for the FIR Wiener filter and the associated mean-square error (1.17). For the first 

order FIR Wiener filter, the vector of filter coefficients h has only two elements, i.e., 

h = [h(0) h(l)]T. Thus we can obtain expressions for these two coefficients by solving 

equation (1.16) as follows. Since the noise is assumed uncorrelated with the signal, Rx(l) 

and Rsx(l) are given by (1.3) and (1.4). Evaluating (1.20) and (1.25) for lag I = 0 and 1, 

and substituting in (1.3) yields 

Rx(0) = a2
s + o* = <rj[l + pin] (III.1) 

and 

Rx(l) = a2
sa + tfy = a*[j + apin] (III.2) 

Similarly, from (1.20) and (1.4) we obtain 

Rsx{0) = a\ (III.3) 
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and 

(III.4) Rsx(l) = OLO\ 

Using (ULI) through (III.4) in equation (1.16) results in 

{pin + 1)     (apin + 7) 

(a Pin + 7)       {Pin + 1) 

Then, solving this matrix equation by inverting the matrix, we can express the filter 

coefficients as 

[ Ä(0) ' 
= al 

1 
 

[ Hi) \ a. 

HO) 

Mi) {pin + l)2 - {aPin + 7)2 
Pin + l -{apin+'j) 

■{0tPin+j) Pin + l 

1 

a 

or, 

HO) = Pi 
{Pin + 1 ~ a2Pin ~ QJ) 

' {Pin + l)2 - {apin + 7)2 

h{l) = Pir 
{a- -7) 

1 r 
{Pin + 1)2- {apin + 7)2 

(III.5) 

(III.6) 

The transfer function for the filter is then given by 

H{z) = h{0) + h{l)z~l 

or 

H{z) = h{0){l-z0z-
1) 

where the zero of the filter is located at 

z-z  -    h(1) Z-Z°-~W) 
or 

zo 
(7-a) 

{pin + 1 - ot2Pin - ay) 

(LIU) 

(III.8) 

(III.9) 

Figures 18 and 19 show the location of the zero z0 of the first order FIR Wiener 

filter as a function of a for different values of 7, and for an input signal-to-noise ratio of 0 

dB and -10 dB, respectively. From these figures we can identify three interesting cases. 

36 



Figure 18. Location of the zero of the first order FIR as a function of the signal and 
noise correlation coefficients (a and 7) for input signal-to-noise ratio of 0 dB. 

First, for a = ±1 and 7 ^ ±1, and any value of the input signal-to-noise ratio, the filter 

places the zero at z0 = Tl- This can be easily verified from equation (III.9). Secondly, 

when a = ±1 and 7 = ±1 we see that z0 assumes different values. These values can be 

found by setting 7 = ±1 in (III. 9) obtaining 

±l-a 
z0 = 

and evaluating 

z0 = lim 
±l-a 

Pin+l- (X2 Pin T OL 

lim 
±1 

(III.10) a=Sl Pin + l - a2pin T a <£*±i -2apin =p 1 2pin + 1 

Finally, when 0 = 7^ ±1, the filter places the zero at z0 = 0, regardless the value of 

input signal-to-noise ratio. This seems intuitively correct, since when a = 7 the filter 

cannot distinguish the signal from the noise, and should become an "all pass" filter 

(2b = 0). 
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Figure 19.   Location of the zero of the first order FIR as a function of the signal and 
noise correlation coefficients (a and 7) for input signal-to-noise ratio of -10 dB. 

Figure 20 shows the location of the zero of the first order FIR filter for 7 = -0.5, 

and for different values of the input signal-to-noise ratio. The three cases discussed above 

are again evident from this figure. 

1.      Processing Gain for First Order Filter. 

To obtain an analytical expression for the processing gain defined in (1.29), we 

first find an expression for the output signal-to-noise ratio (1.31) of the first order FIR 

filter. Starting with the general expression [Ref. 5] 

00        00 
Rv(l)=   E     E   Rx(l - h + koWkJhiko) 

ko=—oo ki=~oo 

and assuming that the signal alone is applied to the filter we have 

1     1 

A:0=OA:i=0 
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Figure 20. Location of the zero of the first order FIR filter as a function of a. for 7 
and for different values of the input signal-to-noise ratio 

-0.5, 

=   h2(0)a> 
h2(0) 

+ 1 +2^ h(0)   , 

and by applying (III.8) we obtain 

Rys(0) = h2(0)a2
s(z2

0-2z0a + l) (III.ll) 

By an identical procedure, we obtain 

Ryn(0) = h2(0)a2
v(z

2-2z0y + l) (111,12) 

Finally, by using (III.ll) and (111.12) in conjunction with (11.11), (1.29) and (1.31), we 

can express the processing gain for the first order FIR filter as 

PG 
{zl + 1 - 2z0a) 
(zl + 1 - 2ZQ7) 

(111.13) 
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Figure 21. Comparison between the theoretical and experimental values of the processing 
gain for the first order FIR filter for 7 = 0 (white noise) and input signal-to-noise ratio 
(Pi„) of 0 dB. 

Figures 21 and 22 show that there is good agreement between the theoretical and 

the experimental values of the processing gain of the first order FIR filter, for the case 

when 7 = 0 and pin = 0 dB, and when 7 = 0.5 and pin = -10 dB, respectively. Figure 

23 shows that the processing gain is independent of the input signal-to-noise ratio at 

three different points. The first point occurs when a = 7, as mentioned before, when the 

filter becomes an "all pass" filter; here the resulting processing gain is 0 dB. The other 

two points occur when a = ±1 and 7 ^ ±1, where z0 = ^1, and upon substituting this 

result into (111.13), we find that the processing gain becomes PG\a=±1 = 2/(1 ± 7), i.e., 

independent of the input signal-to-noise ratio. 

Figure 23 also shows the general behavior of the processing gain for the first 

order FIR filter in the white noise case, for different values input signal-to-noise ratio. 
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Figure 22. Comparison between the theoretical and experimental values of the processing 
gain for the first order FIR filter for 7 = 0.5 (colored noise) and input signal-to-noise 
ratio (pin) of —10 dB. 

Notice that higher values of the input signal-to-noise ratio results in lower values of the 

processing gain. Intuitively, this happens because when the input signal s(n) is strong 

compared to the noise, the filter cannot make a large improvement. In the limit, as 

Pin —>■ 00 the processing gain goes to zero (except at a — ±1). 

2.      Mean Square Error for First Order Filter 

The (unnormalized) mean-square error can be computed from (1.14) using (III.3), 

(III.4), (III.5) and (III.6) yielding 

a2   =   o? - [o?Ä(0) + ao?A(l)] 

=     CT, 
Pin + 1 - a2pin - 2a:7 + a2 

{pin + l)2 - {apin + j)2 
(111.14) 
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Figure 23.   Processing gain for the first order FIR filter as a function of a, for 7 
(white noise), and different input signal-to-noise ratio. 

Alternatively, by applying (III.8), it can be written as a function of z0: 

a2
e=a2

s[l-h(0)[l-az0] 

Using (III. 15) in (1.33) gives the normalized mean-square error as 

MSE = [l-A(0)[l-a2o] 

(111.15) 

(III. 16) 

Figures 24 and 25 compare the theoretical and experimental values of the nor- 

malized mean-square error for different values of input signal-to-noise ratio and the noise 

correlation parameter 7. Again, there is a good agreement between the theoretical and 

the experimental curves. Figure 26 shows the behavior of the normalized mean-square 

error for different values of input signal-to-noise ratio. We see that for higher values of 

the input signal-to-noise ratio the mean-square error assumes lower values, as expected. 
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Figure 24. Comparison between the theoretical and experimental values of the mean- 
square error for the first order FIR filter for 7 = 0 (white noise) and input signal-to-noise 
ratio of 0 dB. 

3.      Signal Distortion for First Order Filter 

The signal distortion defined by (1.34) is easily evaluated. It is easy to show that 

the cross correlation between input and output of a linear system is related to the input 

autocorrelation function by the convolution relation [Ref. 5] 

Rxy(l)=   £  h{k)Rx(l-k) 
k=—00 

Hence, for our first order filter we have 

(111.17) 

RsvAO)   =   Y,h(k)Rs(-k) 
k=0 

=   a2
s(h(0) + ah(l)) 

=   a2
sh(0)(l - azQ) (III. 18) 
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Figure 25. Comparison between the theoretical and experimental values of mean- square 
error for the first order FIR filter as function of a for 7 = 0.5 (colored noise) and input 
signal-to-noise ratio of -10 dB. 

Then, by applying (III.18) and (III.ll) to (1.34), we obtain 

SD = *o2(l ~ a2) 
1 — 2az0 + ZQ 

(III. 19) 

Figure 27 shows the theoretical and experimental values of the signal distortion 

for different values of a, and for 7 = 0 (white noise) at a input signal-to-noise ratio of 0 

dB. We again observe good agreement between the experimental and theoretical results. 

As in the case of the IIR filter, the distortion is zero for a = 7 and a = ±1, and achieves 

a maximum value at a point 0 < ae < 1. In Figures 28 and 29, the noise parameter 

7 has fixed values of 0 (white noise) and 0.5, respectively, and the signal distortion is 

plotted for different values of the input signal-to-noise ratio. Notice that for lower values 

of input signal-to-noise ratio the signal distortion assumes higher values.  In addition, 
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Figure 26. Mean square error for the first order FIR filter as a function of a for 7 = 0.5 
(colored noise) for different values of input signal-to-noise ratio. 

notice that, regardless of the input signal-to-noise ratio, for a = 7 or for a = ±1, the 

signal distortion is zero. This can also be easily verified from (111.19). 

B.     PERFORMANCE MEASURES FOR HIGHER ORDER 
FIR WIENER FILTERS. 

For FIR filters of higher than first order (P > 2), it becomes extremely difficult 

or impossible to derive analytical expressions for the filter coefficients and zeros of the 

filter in term of the basic parameters a, 7, and pin.   However it is still useful to be 

able to compute theoretical values for the processing gain, mean-square error, and signal 

distortion in these cases.  Therefore, in this section we develop a different approach to 

derive expressions for these performance measures, which can be plotted as a function 

of the various parameters. With these results, we can compare the performance the FIR 
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0.06 

Figure 27. Comparison between the theoretical and experimental values of signal distor- 
tion for different values of a and for 7 = 0 (white noise) at a input signal-to-noise ratio 
of 0 dB. 

filter of any order to that of the optimal IIR Wiener filter when they are applied to the 

first order signal and noise models of equations (1.19) and (1.24). 

1.      Processing Gain for Higher Order FIR Filter. 

The output power of a filter expressed in the form (1.15) can be written as 

Rs(0)   =   E{y\n)} 

=   E{(hTx)(xTh)} 

=   hT£{xf}h 

=   hTR*h (111.20) 

Therefore, the output power when the signal and noise act alone is given by 

Rys(0) = hTRsh (111.21) 
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Figure 28. Signal distortion for the first order FIR filter as a function of a for 7 = 0 and 
different values of the input signal-to-noise ratio 

and 

i^(0)=hTIVi (111.22) 

where Rs and R,, are the signal and the noise correlation matrices, which have the form 

°l a2a ..    a2a|P-l| 

f °l °ll . .     a2   \P-l\ ' 

Rs — 
a2a °l        ■ ••   a2

sa\p-2\ 
R77 — 

<%n °l        ■ ■■   S2T|P"21 

_ afaW <j2sa\p~2\   ■ ■           °s _ oJ7
|p-11 

a2j\P-2\     . 

(111.23) 

Thus from (111.21), (111.22), (1.29) and (1.31) we obtain 

PG 
hrRsh     1 
h^h   pi. (111.24) 
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Figure 29. Signal distortion for the first order FIR filter as function of a for 7 = 0.5 and 
different values of the input signal-to-noise ratio 

The processing gain produced by the Wiener filter can be obtained by substituting the 

solution to the Wiener-Hopf equation (1.16) into (111.24). Specifically, from (1.16) and 

(1.18) we have 

h = (Rs + R7?)-
1fs (HI.25) 

Since we have all the necessary expressions, we can plot the values assumed by the 

processing gain (111.24) for different values of a, 7, and pin. 

Figure 30 shows the behavior of the processing gain as a function of a for 7 = 0 

(white noise) and for different values of input signal-to-noise ratio. Notice that the 

processing gain has different maxima for a = ±1, depending on the order of the filter. 

These maximum values can be easily predicted for the white noise case (7 = 0), as 
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follows. For a = 1 and 7 = 0 the signal and noise correlation matrices (III.23) become 

Re — 

2      2 

Rq = 

a\    0    •••    0 

0    a\   -••    0 

v J 

(111.26) 

Under these conditions (III.25) shows that h(0) 

these results to (III.21) and (111.22), we obtain 

0     0    •• 

h(l) = ... = h(P-l). By applying 

hTRsh = P2 a2
s h2(0) 

and 

hTR„h = a\P h2(0) 

Finally, substituting these expressions into (III. 24) results in 

PG = P 

A similar analysis shows that PG = P also for a = —1. 

This result shows that unlike the IIR filter, the processing gain for an FIR has 

a finite bound, which is equal to the filter length. This result can be easily checked in 

Figure 30 *. Notice also that in general, for any value of a, larger length filters produce 

increased processing gain. 

2.      Mean Square Error for Higher Order FIR Filter. 

The normalized mean-square error (1.33) for any FIR filter is not difficult to obtain. 

Using (1.15) and (1.1) we can write 

E {{s(n) - y{n))2}   =   E{(s(n) - hT s - hT fj){s(n) - sT h - ff h)} 

=   as
2-2hTfs + hTRsh + hTR,h 

1Note that the vertical scale in Figure 30 is in dB 
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Figure 30.  Processing gain for the FIR filter of length P for 7 = 0 (white noise) and 
input signal-to-noise ratio of 0 dB 

where the cross terms disappear because the signal and noise are uncorrelated.  Then, 

substituting this expression in (1.33) we obtain 

MSE 2 hT f 8 - hT Rs h - hr R, h 
(III. 27) 

The result (111.27) applies to any FIR filter. For the Wiener filter we can simplify 

the expression by noting from (1.16) and (1.18) that 

(Rs + R^h - fs = 0 

Therefore, for the Wiener filter (III.27) simplifies to 

MSE = 1 - =-£i 
<Ji 

(III. 28) 

This result can also be obtained directly using (1.17). 
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Again, we have all the necessary elements to plot the normalized mean-square 

error as a function of the model parameters and the input signal-to-noise ratio. Figure 

31 shows the normalized mean-square error plotted as a function of a, for 7 = 0 and input 

signal-to-noise ratio of 0 dB. It can be seen that higher order filters result in lower values 

of mean-square error, as expected. However, for the longer filters, there is significant 

improvement in performance only for very high values of the signal correlation parameter 

a, i.e., the ability to reduce mean-square error depends heavily on the correlation present 

in the signal. 

-1        -0.8      -0.6      -0.4 0.2        0.4       0.6        0.8 1 

Figure 31. Mean Square Error for the FIR filter of length P for 7 = 0 (white noise) and 
input signal-to-noise ratio of 0 dB 

3.      Signal Distortion for Higher Order FIR Filter. 

To derive an expression for the signal distortion for the FIR filter of order P, we 

write the response of the filter for the signal alone using (1.15) as ys(n) = hT s. Thus, 
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we have 

E{s(n)ys(n)} = E{s(n) hT s} = hr r, (IH.29) 

and 

E {ys(n)2} =E{hT~s ~sT h} = hT Rs h (HI.30) 

Substituting these expressions into equation (1.34) then produces the desired expression 

SD =x" £lK ■ h, (nL3i) 
This can be evaluated for the Wiener filter by substituting the solution (111.25) for h. 

Figure 32 shows the behavior of the signal distortion for the FIR filter of different 

orders P, for 7 = 0 and input signal-to-noise ratio of 0 dB. The behavior of this measure 

is similar to its behavior in the case of the IIR filter. The signal distortion is 0 dB 

for a = ±1 and for a = 7 and achieves a maximum value around a value ae m ±0.8, 

depending on the length of the filter. In addition, the value of the signal distortion is 

greater for larger filter lengths. 

C.     SUMMARY 

The analysis carried out in this chapter for the FIR Wiener filter shows that this 

filter has performance qualitatively similar to that of the IIR filter, although for the case 

of a first order AR signal and noise model the performance, in terms of the mean-square 

error and processing gain, is never quite as good. 

For the first order FIR filter, which has a single zero, the location of the zero 

changes from +1 to -1 as the signal correlation coefficient increases from -1 to +1. 

When the signal and noise have the same correlation coefficient (a = 7) the zero moves 

to the origin (resultind in an all-pass filter); when both signal and noise are perfectly 

correlated (a = 7 = ±1) the zero moves to a location that depends on the input signal- 

to-noise ratio (see (III.10)). This results in a steady state estimate for the signal which 

is equal to a constant fraction of the input observation sequence. 
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Figure 32. Signal Distortion for the FIR filter of length P for 7 = 0 (white noise) and 
input signal-to-noise ratio of 0 dB 

The performance measures for the FIR filter approaches those of the IIR filter as 

the order of the filter increases. Figures 30, 31, and 32 show plots of the three performance 

measures for the FIR Wiener filter of orders 2, 4, and 10. These performances can be 

compared to those for the IIR Wiener filter in Figures 33, 34, and 35. A significant 

difference between the two types of filters is that the processing gain of the FIR filter, 

when the input signal is perfectly correlated is not infinite, but is limited to a value P 

(the filter length). Also the mean-square error does not go to zero when a = ±1 as in 

the IIR filter case. However, the signal distortion for the FIR filter does go to zero for 

a = 7 and a = ±1, as in the IIR filter, and it is not as large as for the IIR filter. 
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Figure 33. Processing gain for the IIR filter for 7 = 0 (white noise) and input signal-to- 
noise ratio of 0 dB 
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Figure 34. Normalized mean-square error for the IIR filter for 7 = 0 (white noise) and 
input signal-to-noise ratio of 0 dB 
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Figure 35. Signal distortion for the IIR filter for 7 = 0 (white noise) and input signal-to- 
noise ratio of 0 dB 
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IV.        EXTENDED OPTIMAL FILTERING 

The results of the previous chapters show that the Wiener filter, although optimal 

in the mean-square error sense, is not necessarily optimal with regard to minimizing the 

signal distortion. It will be shown here that is possible to create a whole family of 

filters related to the Wiener filter where different performance measures are optimized 

subject to various constraints. We begin with the Wiener filter itself, and then proceed to 

discuss three possible variations. We then provide an analysis of the performance of the 

generalized FIR filter for the first order AR signal and noise model, and finally suggest 

how the generalized filter may be used to obtain an appropriate trade-off between signal 

distortion and mean-square error. 

A.     THE EXTENDED OPTIMAL FILTER PROBLEM 

1.      Minimizing mean-square error 

The Wiener filter simply optimizes the mean-square error without any additional 

constraints. We can derive the FIR form of the filter by beginning with (111.27) which 

applies to any filter. Then ignoring terms that do not depend on h, we can minimize the 

quantity 

-2hTfs + hTRsh + hTR^h 

by taking the gradient with respect to h to obtain [Ref. 5: Appendix A] 

-2f s + 2Rsh + 2R7?h = 0 

or 

h=(Rs + R1?)-
1fs (IV. 1) 

which is the Wiener filter. The minimum mean-square error is then given by (111.28). 
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2.      Minimizing distortion with constrained residual noise 

Ephraim and Van Trees [Ref. 7] have suggested a more general filter for speech 

enhancement, based on one measure of the signal distortion. Here we adapt this idea 

using the signal distortion measure defined in Chapter I. 

We begin with the filter depicted in Figure 3, and the responses ys(n) and yv(n) 

due to the filter acting on the signal and noise alone. The problem is to minimize the 

distortion while constraining the residual noise power to satisfy 

E{y%n)}<al (IV.2) 

where of is some chosen level of residual noise power (not less than the mean-square error 

al for the Wiener filter). We apply this procedure using the signal distortion measure 

(1.34). In the context of an FIR filter, the problem can be formulated as to minimize 

(III.31) subject to the constraint 

E{y2
v(n)} = hTHnh<a2

r (IV.3) 

Let us first consider the procedure for minimizing the signal distortion without 

the constraint (IV.3). To do this it is necessary to maximize the term 

hTRsh hrRsh 
[LWA) 

appearing in (111.31). Since the solution is unique only to within a scale factor, this can 

be done by constraining the denominator to be any constant 

hTRsh = const (IV. 5) 

and maximizing the numerator. Thus, by forming the Lagrangian [Ref. 5, 8] 

£ = hTfsf Jh + ^(const - hTRsh) 

where fj, is a Lagrange multiplier, and setting the gradient of the Lagrangian to zero we 

obtain 

Vh£ = 2fsfJh-2/zR,h = 0 
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This shows that h must satisfy 

fs f J h = fi Rs h (IV.6) 

i.e., h is a generalized eigenvector for the two matrices fs f J and Rs. The only non-trivial 

solution to (IV.6) is given by 

h = R;
1
 f S 

which is equal to the all-pass filter h = [1 0 0...0f with fi = fJR^f... Note that 

the effect of choosing the constant in (IV.5) is merely to multiply the solution by some 

appropriate scale factor. Since the scale factor is unimportant in this problem, we can 

assume the constant is chosen so that the unit vector h = [1 0 0... 0]T results. 

When we introduce the constraint (IV.3) we need to form a new Lagrangian 

£ = (hTf,)f Jh + fix(const - hTRsh) + ^2(ar
2 - hT H, h) (IV.7) 

where yui and fi2 are Lagrange multipliers. Setting the gradient to zero then yields 

Vh£ = 2 fs f Jh - 2 //i Rs h - 2 /i2 RT, h = 0 

or 

fsfJh = //1(Rs + ARr?)h 

where A = fi^jfi\. In this case, we see that the solution is given by 

h = (R, + AR,,)-1?, (IV.8) 

with ßi = f J(RS+AR^) 1fs. The parameter A can be related to of through the constraint 

(IV.2). In particular, substituting (IV.8) into (IV.3) with the equality yields 

fT
s (Rs + AR,,)"1 R„ (Rs + AR,)-1 rs = a, 

which must be solved by iteration. For the case of white noise (R^ = ail) the equation 

can be simplified to 

tr fs i
T

s (Rs + Xap)-2 = aljal (IV.9) 
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The solution (IV. 8) for the extended optimal filter is the same as that of a Wiener 

filter with modified noise power. Some particular special cases are of interest. For A = 0 

we obtain the all-pass filter h = [1 O...0]T (as we have already noted), resulting in 

the maximum residual noise power of = a* and zero signal distortion. For A = 1 we 

have the Wiener filter which minimizes the residual noise power of = o2
w. By choosing 

an appropriate value 0 < A < 1 we obtain minimum distortion with residual noise 

crl < °l < < 

3.      Minimizing distortion for fixed processing gain 

For this problem the processing gain (111.24) is constrained to a fixed value 

hTRsh     1 

and it is desired to maximize the term 

(hrf,)2 = hTTsT Jh 
hrRsh       hTRsh 

appearing in the signal distortion equation (111.31).   Since the solution for h is only 

unique to within a scale factor, one can introduce the constraint 

hTRsh = const 

where as before, the constant can be left unspecified. Then it is desired to maximize the 

term hrfsf Jh subject to the additional constraint 

GPin 

We thus form the Lagrangian 

£ = hTrsTJh + ft (const - hrRsh) + ß2(const/Gpin - hTR5h) 

and set the gradient to zero to obtain 

2fsf Jh - 2/xiR,h - 2^2R77h = 0 
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or 

where A = /j^/ßi- As before, the only nontrivial solution to this generalized eigenvalue 

problem is given by 

h=(Rs + AR7?)"
1fs 

which is of the same form as (IV.8). Note that if the constant had been specified in the 

constraint introduced above, a scale factor would have been required in the last equation. 

Since the scale factor is unimportant, the solution stands as specified. 

In order to find the appropriate value for A, we can apply the original constraint 

(IV.10), writing it as 

hTRsh - Gpinh^Rrjh = 0 

so that A is the solution to the quadratic equation 

hr(A)Ah(A) = 0 (IV.ll) 

with 

A = Rs - GpinRr, (IV. 12) 

and h(A) is given by (IV.8). Note that G must be chosen such that solutions exist and 

the equation needs to be solved by iteration. 

4.      Maximizing processing gain with fixed distortion 

A final problem considered here is to maximize the processing gain while con- 

straining the distortion to be no more than some fixed value D. For this, the problem is 

to maximize the term 
hrR«h 
h^h 

subject to the constraint 
,      (hT is?     1 
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Again, the solution is determined only to within an arbitrary scale factor, so we can 

convert the problem to one of minimizing the term h^R^h subject to the two constraints 

hTRsh = const       and (hTis)
2 = (1 - D)a2 ■ const 

Expanding the last term and forming the Lagrangian yields 

£ = h^h + //!(const - hrRsh) + ß2((l - D)a2
s ■ const - hTfsf

T
sh) 

and setting the gradient to zero produces 

2R7?h - 2//1Rsh - 2Ai2fsf Jh = 0 

or 

fsfJh = //(Rsh + AR^)h 

where // = -/*i///2 and A = -l//zi. As before, this has the solution 

h = (Ra + AR,)"1? s 

again of the same form as (IV.8). 

The implicit equation for A can be obtained by writing the constraint (IV. 13) as 

hrf5fjh - a2(l - D)hTRsh = 0 

This is of the same form as (IV. 11) with 

A = f5f J - a2
s(l - D)RS 

The foregoing analyses show that the solution to several problems involves an 

identical procedure which is equivalent to solving the Wiener filtering problem with a 

scale factor A applied to the noise covariance. For each of the problems, this scale factor 

is determined by solving a different nonlinear equation. We note that not all values of 
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the desired parameter D or G in problems (3) and (4) will lead to legitimate solutions; 

we must require at least that 0 < of/cr^ < 1, 0 < G < P, and 0 < D < 1. However 

all values for which the parameter A is positive lead to correct solutions. Thus, given 

the form of the optimal filter for these various problems, it is most efficient to start with 

values of A and find the appropriate values of residual noise, distortion, or processing 

gain. An iterative search or table lookup can then be used to find the appropriate value 

of A. 

In summary, by choosing a value for A in (IV. 8) we can gain more control over 

the signal distortion at the expense of increased residual noise and mean-square error, or 

trade off processing gain for lower distortion. In the studies presented below, it is shown 

that this added flexibility has some definite advantages for noise filtering. 

B.     PERFORMANCE OF THE GENERALIZED FILTER 

By using equation (IV.8) in (111.24) we can study the processing gain of the filter 

as a function of the parameter A and the signal correlation coefficient a. Figure 36 shows 

the results of this computation for 7 = 0 (white noise) and an input signal-to-noise ratio 

of 0 dB. Notice that the processing gain is lower for lower values of A, demonstrating 

that there is less noise removal for A < 1. 

We can also substitute (IV.8) into equation (III.27) to obtain an expression for 

the mean-square error as a function of a and A. Figure 37 shows these results for the 

same case as Figure 36, i.e., white noise and an input signal-to-noise ratio of 0 dB. Again, 

there is decrease in performance for values of A < 1, going from minimum mean-square 

error for A = 1, which corresponds to the optimal Wiener filter, to maximum for A = 0, 

which corresponds to an all-pass filter, that does not remove any noise from the observed 

sequence. 

Finally, we can apply (IV.8) to (111.31) and plot signal distortion as a function 

of a and A. Figure 38 shows the results for the same case as before. Here we see that 

the signal distortion of the filter improves for higher values of A, going from maximum 
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lambda 0    -1 
alpha 

Figure 36. Processing gain for the generalized Wiener filter as function of a and A for 
7 = 0 (white noise) and input signal-to-noise ratio of 0 dB. 

distortion for A = 1 (Wiener filter) to minimum distortion for A = 0, where the resulting 

all-pass filter does not alter the signal. 

The rate of change of the measures of performance PG, MSE and SD as a func- 

tion of A allows one to make useful trade-offs. Notice from Figures 36 through 38 that 

for values of A greater than approximately 0.4 the performance of the filter in terms 

of processing gain and mean-square error does not change significantly, while the signal 

distortion decreases significantly over this range of values of A. This implies that the gen- 

eralized filter with an appropriately chosen value of A may be more desirable in practical 

applications involving noise removal than the standard Wiener filter. Since the solution 

(IV.8) for the filter is equivalent to that of a Wiener filter with an addition parameter, it 

is convenient to adapt this filter for use in a short-time noise removal algorithm. We will 

see in the following chapter a practical application of the new algorithm, which provides 
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lambda alpha 

Figure 37. Mean square error for the generalized Wiener filter as function of a and A for 
7 = 0 (white noise) and input signal-to-noise ratio of 0 dB 

good performance and more control over the results. 

65 



lambda 0     -1 
alpha 

Figure 38. Signal distortion for the generalized Wiener filter as function of a and A for 
7 = 0 (white noise) and input signal-to-noise ratio of 0 dB. 
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V.        APPLYING EXTENDED OPTIMAL 
FILTERING TO UNDERWATER SIGNALS 

A.     INTRODUCTION 

In this chapter we apply the solution of the extended optimal filter expressed 

in (IV.8) to the short-time filtering algorithm developed by Frack in [Ref. 4]. This 

algorithm assumes that both the signal and the noise correlation functions (Rs(l) and 

Rn(l)) are unknown a priori; therefore they must be estimated from the data at hand. 

Since only x(n) = s(n)+r)(n) is observed, however, only Rx(l) can be estimated directly. 

Nevertheless the nature of the problem provides a way to compute the needed statistics. 

Since the signal is very short (on the order of seconds or milliseconds) compared to the 

time over which the noise statistics are likely to change, an estimate for i^(Z) can be 

made from the received data prior to the onset of s(n). By using (1.3), this estimate can 

in theory be subtracted from Rx(l) to produce an estimate of Rs(l). 

Although there is no explicit analytic expression for the parameter A, we can 

obtain the value of A corresponding to any desired residual noise level by solving (IV. 9). 

In the case of white noise, this is equivalent to writing (IV.3) as 

a*yh = o* || h ||2= al (V.l) 

and then ( by IV.8) solving for A from 

||(Ra + ARfJ)-
1f,||2=4 (V.2) 

Therefore, by setting the level of the residual noise of that can be tolerated, we can 

assign values for A in each segment by iterating on (V.2) until the equality is satisfied, 

thus obtaining the value of A that minimizes the signal distortion. Thus, in principle, all 

of the quantities to perform the extended optimal filtering over a short time interval can 

be computed, and this can be repeated over successive blocks of data. 

The estimate of RS{1) by subtraction of the estimated correlation functions is 

not well formed because there is no guarantee that such an estimate will be positive 
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x(n) 
A{z) 

bo H(z) A(z) 

y[n) = s(n) 

Figure 39. Prewhitening in Short-Time Extended Filtering Algorithm. 

(semi)definite. This problem is mitigated if the noise is white because the procedure 

then involves subtraction of only a single parameter, the white noise variance, from the 

estimated Rx at lag zero. Further, the estimate of this single parameter has lower variance 

than the estimate of the correlation function as a whole. Therefore before any further 

steps, the entire data set is processed by a linear predictive filter that whitens the noise. 

After noise removal, the data is processed by the inverse filter as shown in Figure 39. 

The prewhitened data is segmented into blocks where an estimate of the local cor- 

relation function Rx(l) is formed for each segment. Also, for each segment, the algorithm 

finds the value of A, since A is a function of the Rs(l), R^il), and a?. Extended optimal 

filtering is then performed for each segment using a filter designed for the segment, and 

the data is processed by the inverse filter to undo the effects of the prewhitening. In 

performing the filtering, the data is processed both forward and backward through the 

extended optimal filter. (This gives an approximation to a symmetric noncausal filter of 

twice the length.) Since the optimal filters are different for each block, discontinuities at 

the boundaries can arise. The effect of such discontinuities can be minimized by using 

points from the adjacent segment to filter the early points of the current segment. In the 

algorithm, the data is actually processed twice. The data is first segmented and filtered 

and the resulting frames are weighted by a triangular window (see Figure 40). The data 

is then resegmented using frames shifted by half of the frame length, filtered again and 

weighted by a triangular window. The two weighted sets of data are then added to pro- 

duce the final result and minimize any effects that may occur at the boundaries between 

frames. Additional details of this processing can be found in [Ref. 4]. 
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First pass 
filtering and 
weighting 

Second pass 
filtering and 
weighting 

Figure 40. Overlap Averaging Technique Used in Noise Removal. 

B.     RESULTS 
To obtain a quantitative measure of the signal distortion, we first need to have 

a clean signal s(n), and obtain ys(n), the response of the filter to this signal s(n), as 

explained in Chapter I. In this way we can demonstrate our conclusions about the im- 

provement in the signal distortion accomplished by the extended filtering algorithm. 

For these experiments, an observation sequence x(n) was generated by adding a 

white noise sequence with variance a^ to the clean signal s(n). The sequence x(n) was 

then processed using the algorithm described above to obtain the filter parameters for 

each segment of this sequence. These same filter parameters were then used to process 

the corresponding segments of the clean signal s(n) to obtain ys(n). 

We can now compare the effects of the filter on the signal with respect to signal 

distortion. In order to do that, we introduce the estimates 

(Ens(n)ys(n))2 

and 

SD = 1- 

MSE 
En(s(n) - y(n))2 

(V.3) 

(V.4) 
Ens{n)2 

where the summation is over all points in all segments. 

For all the following experiments, the segment (frame) length is 100 points, the 

filter order is 35, and the AR model order for the noise was arbitrarily set to 10 (this 
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parameter could be set to any value since the noise is white). The first 1,000 points data, 

consisting of noise, was used for the noise sequence. 

Figure 41 shows the result of filtering a clean synthetically generated short pulse 

signal with 1,400 points (41(a)), contaminated by white noise with variance a£ = 0.36 

(41(b)), using the traditional Wiener filter. The result, shown in Figure 41(c), indicates 

that the filter is effective in removing the noise. The signal distortion estimate (V.3) 

for this case is SD = 0.0556, and the normalized mean-square error estimate (V.4) is 

MSE = 0.1896. 

Now, by applying the extended filtering algorithm for the case where more resid- 

ual noise can be tolerated, we can obtain lower signal distortion. Figure 42 shows the 

graphical results for this case where the residual noise power is set to correspond to 30% 

of the input noise power {a2/a2 = 0.30). Part (d) of the figure shows the value of A 

that resulted for a2/a2 = 0.30. Notice that A assumes values less than 1 for some of the 

segments. The signal distortion estimate for this case becomes SD = 0.0541, which is 

an improvement of about 3%, and MSE = 0.1910, a degradation of about 0.7%, when 

compared to the traditional Wiener filtering shown above. 

Figure 43 shows the results for an extreme case when the residual noise power is 

70% of the input noise power. Here we can see that A assumes very low values for most 

of the segments. The signal distortion estimation for this case is very low SD = .0358, 

decreasing the signal distortion by a factor of 36%, and MSE = 0.2249, a degradation of 

about 18%. 

The following table summarizes the results of these experiments using three dif- 

ferent settings for the ratio a2/a2. The values in parentheses indicate the increase or 

decrease from the values achieved by the Wiener filter. 

The results shown here demonstrate that when more residual noise can be toler- 

ated, the signal distortion produced by the filter decreases significantly while the mean- 

square error increases by only a modest amount. 

The noise removal algorithm was also applied to real underwater acoustic data. 
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estimates 
Wiener 
Filter 

Generalized Filter 
oljal = 0.3 a2

r/a2
n = 0.5 <ZK = 0.7 

SD 0.0556 0.0541 
(-3%) 

0.0466 
(-16%) 

0.0358 
(-36%) 

MSE 0.1896 0.1910 
(+0.7%) 

0.1985 
(+5%) 

0.2249 
(+18%) 

Table I. Results from the Generalized Filter Experiments. 

Figures 44 and 45 show the results of applying the extended filtering technique to data 

representing a killer whale song. In Figure 44 we used the traditional Wiener filtering 

process, while in Figure 45 we allowed the residual noise to be 20% of the input noise 

power. For this case, it is difficult to quantify the performance, since the true underlying 

signal is unknown. However, upon listening to the signal, the results are at least com- 

parable to those of the Wiener filter and the slight increase in residual noise is the price 

paid for lower signal distortion. 
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Figure 41. Results of the Application of the Extended Optimal Filtering Technique to 
a Synthetically Generated Short Pulse Signal with Added Low Power White Noise, for 
Minimum Residual Noise (A = 1). (a) Original Clean Data, (b) Original Data plus 
White Noise, (c) Processed Data. 
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(d) 

Figure 42. Results of the Application of the Extended Optimal Filtering Technique to 
a Synthetically Generated Short Pulse Signal with Added Low Power White Noise, for 
Residual Noise Power Equivalent to 30% of the Input Noise Power, (a) Original Clean 
Data, (b) Original Data plus White Noise, (c) Processed Data (d) Values of A for Each 
Segment. 
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Figure 43. Results of the Application of the Extended Optimal Filtering Technique to 
a Synthetically Generated Short Pulse Signal with Added Low Power White Noise, for 
Residual Noise Power Equivalent to 70% of the Input Noise Power, (a) Original Clean 
Data, (b) Original Data plus White Noise, (c) Processed Data (d) Values of A for Each 
Segment. 
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(a) 

(b) 

Figure 44. Results of the Application of the Extended Optimal Filtering Technique to a 
Killer Whale Song for Minimum Residual Noise (A = 1). (a) Original Noisy Data, (b) 
Processed Data. 
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(b) 

Figure 45. Results of the Application of the Extended Optimal Filtering Technique to a 
Killer Whale Song for Residual Noise Power Equivalent to 20% of the Input Noise Power. 
(a) Original Noisy Data, (b) Processed Data. 
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VI.        CONCLUSIONS 

A.     SUMMARY 

The first three chapters of this report provide an extensive analysis of the IIR 

and FIR Wiener filters for removing additive noise from a desired signal. Both signal 

and noise are represented by first order autoregressive (AR) models. Three performance 

measures, namely processing gain, normalized mean-square error, and signal distortion 

are defined and evaluated for the Wiener filters based on these models. We believe that 

the behavior of these filters in terms of the defined performance measures is typical even 

for other cases with more general signal and noise models. 

It was seen that the FIR filter has performance similar to that of the IIR filter, 

although it does not have the same ideal limiting characteristics such as infinite process- 

ing gain when the signal becomes perfectly correlated. We also showed that while both 

forms of the filter provide lower mean-square error and higher processing gain as the 

signal becomes more correlated, signal distortion is not a monotonic function of correla- 

tion. In particular, the signal distortion for both forms of the filter peaks in a region of 

moderately high correlation and increases when the input signal-to-noise ratio decreases. 

This distortion introduced by the filter may be undesirable in some applications. 

Chapters IV and V deal with a way to improve the signal distortion resulting 

from the Wiener filter by considering a more general filtering problem. The result is 

a generalized solution that can reduce the signal distortion of the Wiener filter, with 

some increase in the mean-square error and residual noise. This solution was adopted 

in a short-time filtering algorithm developed by Frack [Ref. 4] and tested. The results 

illustrate that the extended filter provides more flexibility and allows more control over 

the signal distortion introduced by the filtering process. 
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B.     FOR FUTHER STUDY 

While extensive analytical work is presented in this report, extensive testing of 

the new algorithms has not been carried out. For example, it would be desirable to 

carry out formal listening tests to see (over some class of signals) if listeners preferred 

the results of the generalized filter over those of the conventional Wiener filter or, indeed, 

if they can hear the difference. The greatest benefits may come in the use of the new 

algorithms in conjunction with further signal processing steps which may be sensitive to 

any distortion of the signal introduced by the noise removal process. These are all topics 

for futher study. 
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